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Homogenization of electromagnetic crystals formed by uniaxial resonant scatterers
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Dispersion properties of electromagnetic crystals formed by small uniaxial resonant scatterers (magnetic or
electric) are studied using the local field approach. The goal of the study is to determine the conditions under
which the homogenization of such crystals is possible. Therefore the consideration is limited to the frequency
region where the wavelength in the host medium is larger than the lattice periods. It is demonstrated that,
together with the known restriction for the homogenization related to the large values of the material param-
eters, there is an additional restriction related to their small absolute values. On the other hand, the homog-
enization becomes allowed in both cases of large and small material parameters for special directions of
propagation. Two unusual effects inherent to the crystals under consideration are revealed: a flat isofrequency
contour that allows subwavelength imaging using the canalization regime and birefringence of the extraordi-

nary modes which can be used for beam splitting.
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I. INTRODUCTION AND PROBLEM FORMULATION

The problem of homogenization of bulk arrays of small
scatterers operating in an applied field such as dipoles (elec-
tric or magnetic) has a long history. One can recall here the
classical works of Lorentz, Madelung, Ewald, and Oseen.
However, in what concerns the homogenization of arrays of
small resonant scatterers these classical results were revised
in the 1970s taking into account the possible shortening of
the propagating wave at resonance and the strong mutual
coupling of resonant particles. This was done in the seminal
work by Sipe and Kranendonk [1]. In the 1990s the interest
in this problem was renewed by extensive studies of bianiso-
tropic composites (see, e.g., in [2,3]). Metal bianisotropic
particles (chiral particles and omega particles) have small
resonant size at microwaves frequencies due to their complex
shape (they include a wire ring and straight wire portions).
However, the known studies of their homogenization mainly
refer to nonregular arrays. This can be explained by the spe-
cific applications of microwave bianisotropic composites (as
absorbers or antiradar coverings). Work like [4] concerning
regular bianisotropic lattices does not consider the effects of
particle resonance. Briefly, the homogenization problem for
resonant scatterers has not been studied enough. However, it
is becoming very important now for the following reasons.

The first one is the rapid development of nanotechnolo-
gies. It becomes possible to prepare lattices of metallic nano-
particles operating at frequencies rather close to that of the
plasmon resonance of the individual particle. Recently, a sig-
nificant amount of works has been devoted to one-
dimensional (1D) arrays (chains) of silver or gold particles
which were found to be good prospects for subwavelength
guiding of light (see, e.g., [5] and references therein). It is
evident that 2D and 3D lattices of metal nanoparticles pro-
vide potentially an even broader scope of optical applications
than chains. If the homogenization of a 3D lattice is possible

1539-3755/2005/72(2)/026615(15)/$23.00

026615-1

PACS number(s): 42.70.Qs, 78.20.Ci, 42.25.Gy

then one can use the basic knowledge of continuous media
and apply it to the lattices. This approach can be rather in-
structive and we demonstrate an example below. In the
present paper we study the case of microwave scatterers, but
this is only an illustration of the theory. Similar results can be
obtained for the optical range, too. Electric scatterers of
small resonant size are already known in optics, and the pos-
sibility to create small resonant scatterers with magnetic
properties was recently shown in [6].

The second motivation of the present research is related to
the intensive studies of so-called left-handed media [7]. A
left-handed medium (LHM) is an effectively continuous me-
dium with simultaneously negative permittivity and perme-
ability. All-angle negative refraction and backward waves are
inherent to such media. The interest in these artificial mate-
rials was evoked by the seminal work of Pendry [8] indicat-
ing the opportunity of subwavelength imaging using a slab of
a LHM. The best-known realization of the LHM is a uniaxial
version of this medium studied in [9-11] and others. This
structure is composed from two components playing the
roles of the building blocks. The first block (responsible for
negative permittivity) is a wire medium [12—14] and the sec-
ond block (responsible for negative permeability) is a lattice
of split-ring resonators (SRRs) [15]. The SRRs are small
magnetic scatterers experiencing a two-time derivative
Lorentz-type resonance. As a result, the permeability of the
structure can take negative values within the resonance band
of SRRs. This structure operates, however, as a LHM only in
the plane orthogonal to the wires (and for only one polariza-
tion of the wave). The reason for that is the strong spatial
dispersion inherent to wire media at all frequencies [16].
This effect makes the axial component of the wire medium
permittivity dependent on the propagation direction. Only for
waves propagating in the orthogonal plane this permittivity
component is negative for all frequencies below so-called
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FIG. 1. Geometry of an electromagnetic crystal. The arrows
show the directions of the dipole moments of the uniaxial scatterers.

plasma frequency and the structure suggested in [9] can be
treated as a LHM only in this special case.

In order to obtain a variant of the LHM operating in three
dimensions some attempts to use small resonant electric scat-
terers together with magnetic ones [17] as well as bianiso-
tropic scatterers [18—20] have been made. The samples of
LHMs obtained in [18,20] demonstrate high losses in the
LHM regime and this makes the known variants of isotropic
LHMs not very interesting.

However, if the goal is to observe negative refraction and
backward waves, and to obtain subwavelength images in
three dimensions, then the isotropic LHM is not the only
solution. These effects can be obtained in anisotropic struc-
tures, too, and not only at high frequencies. The so-called
indefinite media (in which the principal components of per-
mittivity and permeability tensors have different signs) were
studied in [21-23]. These media offer a variety of effects
including negative refraction, backward wave effect, near
field focusing, high-impedance surface reflection, etc. The
anisotropy of the medium introduces additional freedom in
manipulation by its dispersion and reflection properties [24].
Even a uniaxial medium with negative permittivity along its
axis allows one to observe the effects of negative refraction
and backward waves with respect to the interface [25]. The
theoretical results [21-23] do not prove that the structure
composed of a wire medium and SRRs will demonstrate
these effects in practice. On the contrary, from [16,25] it is
evident that these effects (which should exist in a continuous
uniaxial medium with negative axial permittivity) are absent
in wire media. At the same time, a lattice of uniaxial electric
scatterers oriented in parallel allows one to obtain the nega-
tive axial permittivity for all directions of propagation (i.e.,
without spatial dispersion). If such a lattice substitutes for
the wire medium in the structure reported in [9,10] then the
effects predicted in [21-23] for continuous indefinite media
can be obtained in practice. This is the second reason for the
present study.

In the current paper the dispersion properties of electro-
magnetic crystals formed by orthorhombic lattices of
uniaxial magnetic or electric scatterers are studied. The ori-
entation of scatterers along one of the crystal axes is consid-
ered. The geometry of the structure is presented in Fig. 1. As
an example of magnetic scatterers we have chosen SRRs
[9,10,15] (see Fig. 2). The electric dipoles are represented by
short inductively loaded wires (ILWSs) [17] (see Fig. 3).
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FIG. 2. Geometry of a split-ring-resonator.

An analytical model based on the dipole approximation
and the local field approach is introduced. The dipole ap-
proximation (magnetic dipoles describing SRRs and electric
dipoles describing ITLWSs) restricts the dimensions of inclu-
sions to be much smaller than the wavelength in the host
medium. The local field approach allows us to take into ac-
count the dipolar interactions between scatterers exactly. It
makes possible accurate studies of lattice resonances. The
results allow one to examine when the structure corresponds
to a homogenized model of local uniaxial media and when it
does not.

It is well known that lattices of resonant scatterers
(though they do not exhibit spatial dispersion at all frequen-
cies, unlike wire media) can experience spatial dispersion at
low frequencies as compared to the spatial resonance of the
lattice. This is the case when the wavelength in the medium
becomes comparable with the lattice period [1]. This results
in a resonance stopband [1] and the appearance of complex
modes within it [19,26]. This makes homogenization impos-
sible within a subband belonging to the resonance band. In
the present work we do not pay attention to the complex
modes. The comparison of the original lattice and its homog-
enized model is made using the technique of isofrequency
contours. Such an approach allows us to check the corre-
spondence between properties of the structures under consid-
eration and their homogenized models.

A uniaxial medium with negative permittivity (or perme-
ability) along its axis and positive permittivity (or permeabil-
ity) in the transversal plane has isofrequency contours of
hyperbolic form [21-24]. These isofrequencies correspond to
negative refraction [22,23]. If both the original lattice and its
homogenized model possess such isofrequencies then they
both possess negative refraction. More generally, if the ho-
mogenized model of the lattice keeps (at least approxi-
mately) the same isofrequency contours, then the homogeni-
zation is allowed. If the homogenization dramatically
changes the contours the homogenization is forbidden. This
is the main idea of our approach.

II. MODELS OF INDIVIDUAL SCATTERERS

The geometries of the SRRs and ILW are presented in
Figs. 2 and 3, respectively. Since the dipole moments of all
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FIG. 3. Geometry of the inductively loaded wire dipole.
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scatterers are directed along x (see Fig. 1) an individual scat-
terer can be characterized by the scalar polarizability « re-
lating the dipole moment to the local field (external field
applied to a scatterer).

A. Split-ring resonators

The SRR considered in [9,10,15] is a pair of two coplanar
broken rings (see Fig. 2). Since the two loops are not iden-
tical the analytical models for such SRRs are rather cumber-
some [27,28]. In fact, such a SRR cannot be described as a
purely magnetic scatterer, because it exhibits bianisotropic
properties and has resonant electric polarizability [27,28]
(see also the discussion in [29]). However, the electric polar-
izability and bianisotropy of SRRs is out of the scope of this
paper. We neglect these effects and consider an ordinary SRR
as a magnetic scatterer. The analytical expressions for the
magnetic polarizability a(w) of SRRs with geometry plotted
in Fig. 2 were derived and validated in [28]. The final result
reads as follows:

Aw? 3 ,LL(2)772}"4
L+M’

(1)

dw)=—F7F7F"-7,
(@) wé—w2+jwr

where w, is the resonant frequency of magnetic polarizabil-
ity,
L
T (L+mc,’

L is the inductance of the ring (we assume that both rings
have the same inductance),
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C, is the effective capacitance of the SRR,
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I is the radiation reaction factor,
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r is the inner radius of the inner ring, w is the width of the
rings, d is the distance between the edges of the rings (see
Fig. 2), ey and p are the permittivity and permeability of the

host medium, and k= w\equ, is the wave number of the host
medium. The presented formulas are valid within the frame
of the following approximations: w,d<<r and the splits of
the rings are large enough compared to d. Also, we assume
that the SRR is formed of ideally conducting rings (no dis-
sipation losses).

The magnetic polarizability (1) takes into account the ra-
diation losses and satisfies the basic Sipe-Kranendonk con-
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dition [1,26,30] which in the present case has the following
form:

k3
67hy

Imla ! (w)] = (2)

In the following analysis we operate with the inverse po-
larizability o '(w); thus, we rewrite Eq. (1) in the form

2
a‘l(w):A‘l<%—l>+j (3)

B. Inductively loaded short wires

A typical resonant electric scatterer is an inductively
loaded short wire, as shown in Fig. 3. The electric polariz-
ability a, of loaded wires following the known model [17]
has the form

3 [1-w¥o? I
—1 ( O) . (4)

a, = +
¢ PCyire \ 4 — 0/} ]67T80

where C\i..=ley/In(21/ry) is the capacitance of the wire,

®o=VLCy;e is the resonant frequency, L is the inductance of
the load, [ is the half length of the wire, and r, is the wire
radius.

It is clear that at frequencies near the resonance the po-
larizability of the ILW has the form

2 3
k
o) () zA;(—“’g - 1) +j , (3)
w

with A,=[?C;,.., which is similar to Eq. (3). Moreover, if
A,leq=A/pu, then using the duality principle the magnetic
dipole with polarizability « [Eq. (3)] can be transformed to
the electric dipole with polarizability «, [Eq. (3)], and vice
versa. This means that it is enough to consider only one type
of resonant scatterer. In the present paper we have chosen
magnetic ones to be principal. The electric scatterers can be
easily obtained using the duality principle from the magnetic
scatterers by A=A,/ .

III. HOMOGENEOUS MEDIA APPROACH

Let us consider an orthorhombic lattice with periods
aXbXc formed by magnetic uniaxial scatterers directed
along x (see Fig. 1) and described by the polarizability (1).
For electric scatterers (ILWs) the problem is dual to the
present one. In the long wavelength limit the lattices of scat-
terers are usually described as homogeneous media with cer-
tain material parameters. The lattice under study can be mod-
eled as a resonant uniaxial magnet. The permeability of such
a magnet is a dyadic of the form

= uXoXo + fo(YoYo + ZoZo)-

The permeability w (x component of the tensor) can be
calculated though the individual polarizability of a single
scatterer using the Clausius-Mossotti formula [31]
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FIG. 4. (Color online) Dependencies of relative permeability
! o and normalized polarizability a/(uga’) vs normalized fre-
quency ka for cubic lattice (a=b=c) of SRRs with A=0.1 uoa® and
wy=1/(avep).

a(w)/(poV) ) ©)

= 1+
® MO( 1 -Cy(a,b,c)a(w) uy

where V=abc is the volume of the lattice elementary cell and
C,(a,b,c) is the static interaction constant of the lattice. The
following expression for this interaction constant is available
in (Ref. [31], p. 758):

1 2(am)? = (bn)? = (cl)?

AT (i 2(00.0) Llam)? + (bn)* + (c1)*]

Cy(a,b,c) =

1202 4 =
- X Xm

3
ma A" (n,1)#(0,0) m=1

xm(zﬂv(bnh (cl)Z), )

where K(x) is the modified Bessel function of the third kind
(the McDonald function). In the case of a cubical lattice a
=b=c the interaction constant is equal to the classical value
C,=1/(3V).

Notice that the radiation loss contribution in expression
(3) should be skipped when substituting into formula (6).
This makes permeability a purely real number as it should be
for lossless regular arrays [1,26]. This manipulation is based
on the fact that the far-field radiation of the single scatterer is
compensated by the electromagnetic interaction in a regular
three-dimensional array, so that there is no radiation loss for
the wave propagating in the lattice. The mathematical proof
of this fact for general dimensions of the lattice is presented
in the Appendix.

The typical dependence of the magnetic permeability u
on frequency is presented in Fig. 4 for a cubic lattice (a=b
=c) of SRRs with parameters chosen so that A=0.1uqa’ and
wo=1/(a \e"so,uo). The resonant frequency shift from ka=1 to
0.984 is clearly observed. While ka <0.984 the structure is
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FIG. 5. (Color online) Isofrequency contours in the yz plane for
a uniaxial magnetic material with permeability as in Fig. 4. The
numbers correspond to values of ka.

paramagnetic (u>1). For ka within the [0.984, 1.0352]
range the permeability is negative (u<<0). For ka>1.0352
the medium is diamagnetic (0<u<1).

The dispersion equation for the uniaxial magnetic me-
dium has the following form (see, e.g., [24,25,31]):

pold; + ) = k> = q3). (8)

Thus, the isofrequency surfaces for such materials have the
form of a spheroid if w>0 (the spheroid is prolate for u
<1 and oblate for w>1) or a hyperboloid if w<0. Both
types of isofrequency surface have the symmetry axis along
X.

The medium is isotropic in the yz plane (the isofrequency
contours in this plane are circles; see Fig. 5). Thus, we can
restrict our consideration to the xy plane without loss of gen-
erality. The typical isofrequency contours in this plane are
shown in Figs. 6 and 7. The magnetic under consideration
has the same parameters as in Fig. 4. The ranges of wave
vector components ¢, and g, are restricted to +/a and
+1/b, respectively, having in mind that the exact dispersion
diagram of the lattice corresponds to the first Brillouin zone,
and we will compare the homogenized model with the exact
theory.

While the frequency is below the resonance (ka <0.984)
the isofrequency contour has the form of an ellipse prolate
along the y axis (u>1). For frequencies above the resonance
but less than the frequency at which the permeability turns to
zero (0.984 <ka <1.0352) the isofrequency contours are hy-
perbolas (1 <<0) (see Fig. 4). If the frequency is above the
frequency at which the permeability passes zero (ka
>1.0352) then the isofrequency contour becomes an ellipse
oblate along the y axis (0<u<1). All the isofrequency con-
tours pass through the points g,==+k. In particular, all the
ellipses have the same semiaxes along x (equal to k). Notice
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FIG. 6. (Color online) Isofrequency contours in the xy plane for
uniaxial magnetic material with permeability as in Fig. 4 for fre-
quencies near the resonance of the permeability. The numbers cor-
respond to values of ka.

that the solution g,=k corresponds also to arbitrary values of
qy-q, if p—oc. This implies the propagation of all waves
along the optical axis x with the same phase velocity which
is equal to that of the host medium. Strictly speaking, for an
infinite value as well as for finite large values of u the ho-
mogenization is forbidden. But we will show using the local
field method that the homogenization is allowed even at a
frequency such that u— o if one restricts consideration to a
special case of propagation. In general, it turns out that at all
frequencies there are special cases of propagation for which
the homogenization is allowed.
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FIG. 7. (Color online) Isofrequency contours in the xy plane for
uniaxial magnetic material with permeability as in Fig. 4 for the
frequencies where the permeability is close to zero. The numbers
correspond to values of ka.
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The hyperbolic form of the isofrequency contour is a
unique feature inherent to resonant uniaxial magnets
[21-25]. Tt allows one to achieve negative refraction at all
incident angles for p polarization if the interface is normal to
the optical axis. In the case of a resonant uniaxial dielectric
medium the same effect happens for s polarization. If the
uniaxial medium is two component and has both negative
axial permittivity and permeability, the negative refraction
should be observed for both p and s polarizations [21-25].

Below we will compare Figs. 6 and 7 with those calcu-
lated for an original lattice of SRRs using the exact ap-
proach.

IV. DISPERSION EQUATION FOR ELECTROMAGNETIC
CRYSTALS FORMED BY UNIAXIAL SCATTERERS

Following the local field approach the dipole moment M
of a zero-numbered scatterer is determined by the magnetic
field H,,. acting on this scatterer: M=aH, , where H
=(Hj,.- X). This local field is the sum of the magnetic fields
H,,,, produced at the coordinate origin by all other scatter-
ers with indices (m,n,l) #(0,0,0):

2 Hm,n,l' (9)

(m,n,0)#(0,0,0)

Hloc =

The magnetic field produced by a single scatterer with
index (m,n,l) is given by the dyadic Green’s function G(R):

Hm,n,l = IU'BIG_(Rm,n,l)Mm,n,I’ (10)
where
o IkR

G(R) = (K + V)

We consider uniaxial scatterers oriented along the x, di-
rection, so it is enough to use only the xyx, component of the
dyadic Green’s function. So we replace Eq. (10) by the scalar
expression

Hi;,n,l = lu’alG(Rm,n,l)Mm,n,l? (1 1)
where
P )e‘ij
GR)=|k+—
®) ( ox?) 4R
22— y2 _ 2 yz g
=| (1+jkR +i2 )
{( JR) R* R?> |4mR

To study eigenmodes of the system we introduce the
phase distribution of dipole moments determined by the un-
known wave vector q=(q,,q,.q,)" as follows:

Mm = Me—j(qxam+q),hn+qzcl) ) (12)

Collecting together expressions (9), (11), and (12) we ob-
tain a dispersion equation relating the wave vector q to the
frequency w:

M=aps' X
(m,n,0)#(0,0,0)

G(Rm . Z)Me—j(qxam+qybn+qzcl) )
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It can be rewritten in a more appropriate form as

[poa (@) = Clk,q) 1M =0, (13)

where

Clkq,a,b,c)= X G(R,,, e @amabraeh

(m,n,1)#(0,0,0)
(14)

We call C the dynamic interaction constant of the lattice
using the analogy with the classical interaction constant from
the theory of artificial dielectric and magnetics materials
[31].

The dispersion equation (13) has two different types of
solution. The first ones are ordinary waves with zero dipole
moments (M=0). They are plane waves propagating in the
host medium which have zero component of magnetic field
along the direction of the dipoles. They do not interact with
the lattice (do not excite magnetodipole moments). The
waves of the second type are extraordinary waves. They ex-
cite magnetodipole moments (M #0) strongly interacting
with each other. The dispersion equation for extraordinary
modes transforms Eq. (13) to

o (o) = C(k,q,a,b,c) =0. (15)

The solution of this dispersion equation allows us to study
dispersion diagrams for the crystal under consideration. The
main problem is the calculation of the dynamic interaction
constant C given by Eq. (14). This question is closely related
to such concepts as the static interaction constant (7) and the
triply periodic dyadic Green’s function. The static interaction
constant can be obtained from Eq. (14) by letting k=¢,=¢,
=¢,=0 and choosing the appropriate order of summation for
the conditionally convergent series obtained [32]. The plane-
wise summation method [32,33] or Poisson summation for-
mula based technique [31,34] is usually applied for calcula-
tion of the static interaction constant. The triply periodic
dyadic Green’s function represents the field produced by a
phased lattice of point dipoles. If the zero-numbered term is
added to the series (14) [simultaneously one should move the
observation point in Eq. (10) from the node of the lattice to
avoid singularity] the formula (14) will give a copolarized
component of the dyadic Green’s function. The triply peri-
odic dyadic Green’s function is usually evaluated with the
help of the classical Ewald method [35-37]. However, other
methods of summation (with improved convergence rate) ex-
ist as well [38,39]. All the methods listed above can be ap-
plied for evaluation of the dynamic interaction constant (14).
The Ewald method requires appropriate choice of splitting
parameter [40], which is a sophisticated manipulation. Also,
it does not show the energy balance in the lattice (neither do
the other methods mentioned above). Therefore, we have
chosen a different method of summation. Our approach com-
bines the planewise summation [32,33] and the Poisson sum-
mation technique with singularity cancellation [31]. Details
of the evaluation of C, which includes the energy balance
condition as an intermediate step, are presented in the Ap-
pendix.
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FIG. 8. (Color online) Dispersion diagram for cubic lattice (a
=b=c) of SRRs with A=0.1uoa’ and wy=1/(aveyu).-

V. DISPERSION PROPERTIES OF THE CRYSTAL

The dispersion equation (15) with interaction constant
C(k,q) given by formula (A37) from the Appendix is solved
numerically. The parameters of the structure are the same as
those of the homogenized structure: cubic lattice (a=b=c) of
SRRs, A=0.1ua%, and wy=1/(a\eouo). The dispersion dia-
gram for the crystal is presented in Fig. 8. The points
'=(0,0,0)7, X=(w/a,0,0)", Y=(0,7/a,0)T, L=(0,n/a,
wla)T, K=(m/a,0,mw/a)T, and R=(m/a,mla,w/a)” of the
first Brillouin zone are illustrated in the sketch in the left
bottom corner of the plot. The dotted lines represent disper-
sion curves for ordinary modes of the crystal which coincide
with light lines. An incomplete resonant stopband for ex-
traordinary modes (similar to those discussed in [26]) is ob-
served in the vicinity of the resonance of individual inclu-
sions.

The dispersion curve for the (010) direction (branch I'Y in
Fig. 8) is shown in Fig. 9 for comparison with result pre-
dicted by homogenization model. For this direction of propa-
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FIG. 9. (Color online) Dispersion curve for (010) direction. Ex-
act solution (solid line), prediction by homogenization model
(dashed line), and light line (dotted line).

026615-6



HOMOGENIZATION OF ELECTROMAGNETIC CRYSTALS...

AN A
-1 -08-06-04-02 0 0.2 04 06 0.8 1
qa/n

FIG. 10. (Color online) Isofrequency contours in the yz plane
for frequencies near the top and bottom edges of the stopband. The
numbers correspond to values of ka.

gation the agreement with the homogenized model is fine
except in the narrow frequency range 0.979 <ka <0.984.
This region is shown in the inset of Fig. 9 and it is clear from
Fig. 8 that it corresponds to the lower edge of the stopband
for waves propagating in the transverse plane (yz). This fre-
quency range in the homogenization model corresponds to a
high propagation constant ¢,> 7/a and a high positive per-
meability > 72/ (ka)?. This means that the homogenization
in the case u> 7/ (ka)?, strictly speaking, describes the dis-
persion of the lattice in a wrong manner. This is an expected
result which corresponds to the known predictions of the
classical theory [1]. Below we will consider this frequency
range in detail.

The frequency band 0.9803 <ka <<1.044 corresponds to
negative axial permittivity of the homogenized model of the
lattice. Negative axial permittivity means an imaginary
propagation constant for the transverse plane and this result
nicely corresponds to the stop band for the yz plane predicted
by the exact theory. So homogenization within 0.9803 <ka
<1.044 is allowed.

The isofrequency contours in the yz plane for frequencies
near the bottom 0.96 <ka <0.9803 and top 1.04 <ka<<1.10
edges of the transverse stop band are presented in Fig. 10.
The behavior of isofrequency contours shown in Fig. 10 is
typical for general electromagnetic crystals at frequencies
near the stop band edges [41-43]. While the frequency is
rather far below the stop band (ka<<0.979) the isofrequency
contours have the form of circles and the agreement with the
homogenized model is fine (see Fig. 5). The same behavior is
observed above the stop band (ka>1.044). The circles for
ka > 1.044 are smaller than those for ka <0.979 which nicely
corresponds to the smaller effective permeability (see Fig. 4).
However, within the narrow frequency range 0.979 <ka
<0.9803 the isofrequency contours acquire a form that is
different from a circle. This anisotropy in the transverse
plane gives evidence of spatial dispersion. Notice that in this
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FIG. 11. (Color online) Isofrequency contours in the xy plane
for frequencies near the top edge of the stop band. The numbers
correspond to values of ka.

band in the lattice there are two evanescent modes whose
wave vectors lie in the transverse plane (see also [26]).
Strictly speaking, the crystal cannot be homogenized at these
frequencies, and these frequencies correspond to a high posi-
tive p of the homogenized lattice. It was already noticed
above that this is the expected result.

Significant disagreement between the exact solution and
the result of homogenization was also obtained at frequen-
cies near the top edge of the stop band. The isofrequency
contours in the xy plane for this frequency range are pre-
sented in Fig. 11. They dramatically differ from the predic-
tion given by the homogenization model shown in Fig. 7.
Following the homogenization approach, the isofrequency
contours should have a hyperbolic form at frequencies cor-
responding to a negative effective permittivity and an elliptic
one in the case of positive permittivity (see Fig. 7). The exact
modeling reveals that this switching between hyperbolic and
elliptic types of isofreqency contours happens in a different
manner. When ka <1.0435 the isofrequency contours have a
form that is similar to a hyperbolic one but they are already
distorted. At the higher frequencies ka>1.0435 the “hyper-
bolic” contours continue to distort, and simultaneously “el-
liptic” contours (the second branch of the same isofrequency)
appear in vicinity of the I' point. The hyperbolic contours
pass through points g,==+k while ka<<1.0455, but elliptic
ones do not. For ka>1.046 the situation changes to the op-
posite one. The elliptic contours acquire a fixed size along
the x axis and start to pass through points g,=+k. On the
other hand, the hyperbolic contours start to collapse around
the X point and completely disappear for ka>1.051. In this
way the hyperbolic contours transform to elliptic ones pass-
ing through the regime where both types of contours coexist
at the same frequencies. At any frequency only one of these
contours passes through the points g,=+k.

Thus, in the region 1.043 <ka<1.051 homogenization
gives the wrong results for the waves propagating in the xy
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FIG. 12. (Color online) Isofrequency contours in the xy plane
for frequencies near the bottom edge of the stop band. The numbers
correspond to values of ka.

plane because of the two-mode regime observed in the origi-
nal structure. This region corresponds to small absolute val-
ues of u (|u| <0.2 in our case). Strictly speaking, homogeni-
zation in the region of small |u| turns out to be forbidden. In
our opinion, this is a qualitatively new result. However, as
follows from Fig. 10 the homogenized model makes the cor-
rect prediction for waves propagating in the yz plane in the
band 1.043 <ka<<1.051. One can conclude that homogeni-
zation at these frequencies (forbidden in its strict meaning) is
allowed for the case of transversal propagation.

The described regime of the coexistence of hyperbolic
and elliptic isofrequency contours at a fixed frequency means
birefringence for extraordinary modes and three-refringence
in the case of refraction (one ordinary wave and two extraor-
dinary ones). The extraordinary mode corresponding to the
hyperbolic contour refracts negatively, and the other one
(corresponding to the elliptic contour) experiences positive
refraction. This property can find different applications
(beam splitting, etc.).

VI. CANALIZATION REGIME AND SUBWAVELENGTH
IMAGING

Above, we pointed out that near the bottom edge of the
stop band (frequencies corresponding to high positive ) the
homogenized model wrongly predicts the dispersion of
waves propagating in the yz plane. Now let us show that the
homogenized model gives the qualitatively correct predic-
tions in this frequency region if consideration is restricted to
propagation in the xy plane. The isofrequency contours in the
xy plane for frequencies near the bottom edge of the stop
band are presented in Fig. 12. The behavior of the contours is
in the good agreement with the predictions of the homog-
enized model (see Fig. 6). A difference is noticed only near
the edges of the lowest Brillouin zone. So homogenization
(forbidden in its strict meaning for ka=0.98) is still allowed
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for the case of oblique propagation with respect to the optical
axis.

At frequencies near ka=0.989 the isofrequency contours
are practically flat. This means that all eigenmodes at such
frequencies have the same axial component g,==+k of the
wave vector. Moreover, they all have the same group veloc-
ity (the group velocity is normal to the isofrequency con-
tour). This causes the eigenmode to be the so-called trans-
mission line mode, like that of a wire medium [16]. For both
a lattice of uniaxial scatterers and a wire medium this isof-
requency corresponds to the infinite material parameter of
the homogenized model. The difference is that in the present
case the flat isofrequency contour exists at a single frequency
ka=0.989, in contrast to the wire medium, which supports
transmission line modes in a very wide frequency range.

Note that the presence of flat isofrequency contours is not
a specific feature of the crystals studied here. The flat isof-
requency contours can be found in the band structures of
various periodic media, especially close to the band gap
edges, as exemplified in photonic crystals or in electronic
bands of semiconductors.

The flat isofrequency contours we have found can be used
for the implementation of the so-called canalization regime
described in our recent paper [43]. Similar regimes are called
also self-guiding [44], directed diffraction [45], self-
collimation [46], and tunneling [47]. In [43] we have shown
that not only all propagating spatial harmonics will be trans-
formed into a strictly parallel beam at the frequency corre-
sponding to the flat isofrequency contour; all evanescent
waves impinging on the medium at this frequency will also
be transformed into a plane wave with g, =k transporting the
energy along the optical axis. Therefore this regime allows
creation of subwavelength images of the sources and trans-
mission of their near field to unrestricted distances.

The canalization regime for a slab of medium possessing
a flat isofrequency does not involve negative refraction and
amplification of evanescent modes, which are usually used
for that purpose [8,42,48]. Its main feature is transformation
of the spatial spectrum of the incident field into a collimated
beam directed across the slab. All spatial harmonics of the
source refract into such eigenmodes at the front interface.
These eigenmodes all propagate normal to the interface with
the same velocity and deliver the input distribution of the
electric field to the back interface. Their refraction at the
back interface forms the image. The problem of reflection
from a slab (and inner reflections in the slab) can be solved
using Fabry-Pérot resonance. The Fabry-Pérot resonance
holds for all incidence angles including complex angles. The
reason for that is simple: after the refraction all the incident
waves acquire the same longitudinal component of the wave
vector g,=k. Thus, in the canalization regime there is no
image deterioration because of the finite thickness of the lens
(there are no waves traveling along the interfaces).

VII. CONCLUSION

In the present paper we have studied dispersion properties
of electromagnetic crystals formed by uniaxial resonant scat-
terers (magnetic and electric ones). The structures are mod-
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eled using the local field approach. The main tricky point of
this theory is evaluating the dynamic interaction constant of
the lattice. This constant has been calculated using a special
analytical method based on a planewise summation ap-
proach, the Poisson summation formula, the singularity can-
cellation technique, and the convergence acceleration of
slowly convergent series. As a result, a transcendental dis-
persion equation has been obtained in a form suitable for
rapid and efficient numerical calculations. Comparison of the
exact solution provided by this equation with the homogeni-
zation model allows us to show that the structure, strictly
speaking, cannot be homogenized not only at frequencies
that correspond to very high values of the effective perme-
ability or permittivity (this was well known earlier) but also
at frequencies corresponding to small absolute values of
them.

However, if one is interested in special cases of propaga-
tion then homogenization can be allowed in both these fre-
quency bands. For propagation in the plane comprising the
optical axis, homogenization is allowed in the region of large
material parameters. For propagation in the plane orthogonal
to the optical axis, homogenization is allowed in the region
of small material parameters.

It has been already known since the 1970s [1] that the
method of local fields stresses the difference between the
homogenized model and the theory of a discrete lattice of
scatterers. This is because this method considers the scatter-
ers as point dipoles whose reradiated field is singular at their
centers. Actually, the true field is spread over the domain of
real scatterers, and the homogenized model should work bet-
ter than the method of local fields predicts. The discrepancy
between the effective medium model and the model of the
discrete lattice that we have shown in the present work is in
this meaning the maximal one. The results we have presented
refer to a simple cubic lattice, though the corresponding
analysis can be easily made for orthorhombic lattices, and
the bounds of the homogenized model outlined above are
basically the same.

Unfortunately, in experimental work dealing with lattices
of resonant uniaxial scatterers, like [49], the authors usually
consider only the special case of propagation: namely, propa-
gation in the plane orthogonal to the optical axis of the crys-
tal. If the authors of these reports considered propagation
along the optical axis or even obliquely with respect to it,
then they could see that at certain frequencies the homoge-
neous medium approach does not work.

During our study we have also found two interesting
properties of the crystals under consideration. At a single
frequency near the bottom edge of the stop band the isofre-
quency contour is flat and this frequency corresponds to in-
finite permeability or permittivity. This fact makes it possible
to use the crystals for subwavelength imaging. The two-
mode regime is observed at frequencies near the top edge of
the stop band. This corresponds to birefringence for extraor-
dinary waves and to three-refringence of the incident wave in
the general case of arbitrary polarization, which can be used
for beam splitting.

The dispersion theory presented in this paper is a power-
ful tool for dispersion analysis of three-dimensional electro-
magnetic crystals. In the present form the theory is restricted
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to the case of simple (uniaxial) scatterers, but it can be ex-
tended to the case of electric or magnetic scatterers with an
arbitrary dyadic response. This will be done in our future
publications. In this case it will be possible to develop an
analytical theory for a lattice of isotropic resonant scatterers
(e.g., metallic spheres in the optical range) in a more accu-
rate manner than the known low-frequency approximations
[31,34,35,50] allow one to do. This can be useful for the field
of optics of metal nanoparticles, which is developing fast.

APPENDIX: EVALUATION OF DYNAMIC INTERACTION
CONSTANT

For calculation of the dynamic interaction constant
C(k,q) [Eq. (14)] we apply a method based on planewise
summation, Poisson summation formulas, and the singularity
cancellation technique. This method was applied in [51] for
calculation of the two-dimensional dynamic interaction con-
stant for the theory of doubly periodic wire lattices. The
series in Eq. (14) are divergent in the classical meaning, but
the physical reasoning for the necessary type of summation
is clear enough. Due to the existence of losses in real space
one should add an infinitesimal imaginary part to the wave
vector k of free space and tend it to zero in order to get the
correct result.

We split the series (14) (remember that the zero term is
excluded from the summation) into three parts:

Elg §4—§)§

1#0 m=—0 p=—x n#0 m=-% | -

+ 2

m#0 | 1zp=0

These parts are denoted as C,,; respectively, and C
=C;+C,+C5. The splitting areas are shown in Fig. 13. The
term C; describes the contribution to the local field from all
plane grids that are parallel to the xy plane except the grid
located in this plane. The term C, corresponds to the contri-
bution of the dipole linear chains parallel to the x axis and
located in the xy plane except the chain located on this axis.
The term Cj is the contribution from all dipoles of the chain
located on the x axis except the dipole located at the origin of
the coordinate system. Notice that C,+C; gives the interac-
tion constant of the planar grid.

For evaluation of the term C, it is possible to use the
Poisson summation formula for double series which leads to
an expression with rapidly (exponentially) convergent series.
The term C, can be calculated using the ordinary Poisson
summation formula together with the singularity cancellation
technique [31]. It is impossible to apply the Poisson summa-
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FIG. 13. Splitting areas.
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tion formula for evaluation of the term Cj; since it contains a
noncomplete series. Convergence of these series can be ac-
celerated using dominant part extraction [52].

1. Contribution of parallel planar grids

The double Fourier transformation of any function f(x,y)
is defined as follows:

Flpyg) = Ly f(x.y)} = J PR

The Poisson summation formula for double series has the
following form [31]:

s Ef(ambn)——Em > (m 2?)

m=—o p=—0n m—_oo n=—ow

(A1)

The double Fourier transform of the Hertz potential of a
dipole reads

1 oy 1 e_‘z‘\;pzwz_kz
Lx ) =7 ’ (Az)
I am 2 +y 4+ 2\pP+ -k

where the sign of the square root should be chosen so that
[2, 2 12
Im(vVp*+q*—k*)=0.
Applying the shift and differential properties of the Fou-
rier transformation to the Fourier image of the Hertz poten-

tial (A2) we obtain the transformation rule

( , & ) ek | milgerrayy)
L,, k“+ =
=¥ Px \/x +y +Z 4ar

o~ + P +ay + 0>k

- (QX +I’)2
2 Vg, +p)?+ (g, +9)* - K

Using the Poisson summation formula (A1) together with
(A3) we obtain the term C, in the form

(A3)

+ ]p e j(\cl|k mn) +q,cl)
C = #20 > 2 P (A4)
m=—oo n_—oc z
where
27Tm 2mn
(m) _ (n) _ 2
k m qx . ’ kyl‘t - y + b ,

pu= VU -k

K = S (.

Here we choose Im(vr-) =0, so that Im(kim”)) <0. The rep-
resentation (A4) can be treated as an expansion of the fields
produced by parallel dipole grids in terms of the Floquet
modes. The wave vectors of these modes are

— (1) 1(n) 7 (mn\T
k(mn)_(kxm’kyn ’kzm1) )

The series with index [/ in Eq. (A4) are geometrical pro-
gressions and their summation can be made directly:
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—jk(mn)c
E e‘j(ldlkimn)"'qzd) __ e’z — COS qZC

120 cos kgm”)c - o8 g.¢

This allows one to rewrite expression (A4) for the term C; as

i e‘jk(mn)c cos g.c
=2 E —

=0 =—c0 2. ]abk ) cos k(’”” c—cosq.c

(AS)

These series possess exponential convergence. It is clearly
seen if the second factor of the term under the summation in
Eq. (A5) is rewritten as

1 1
_ N .
JErg)el _ T i =g)el _ 4

This makes Eq. (A5) suitable for rapid numerical calcula-
tions.

2. Contribution of parallel chains from xy plane

The ordinary Fourrier transformation has the form

F(p) = L{f(x)} = f e,

Poisson’s summation formula for single series reads

(A6)

S flam=+3 F(z%)

m=—0 [ —

The Fourier transform for the Hertz potential of a dipole
is

—jk\““x2+y2+z2
1 e ! [T_.2
VX y Z

(A7)

Thus, applying the shift and differential properties of the
Fourier transformation to the image of Hertz’s potential (A7)
we get the following transformation rule:

1 (92 —]k\ x2+y2+z2
Lo, 2
dar

)2yt 22

1
= — (K~ PIK(p? =~ 2y +2). (A8)
2m
Using Poisson’s summation formulas (A6) together with
(A8) we obtain the term C, in the form

Y E p - Ko(pulonl)e .

n#0 m——Oc

(A9)

If the arguments of McDonald’s functions in Eq. (A9)
have nonzero real part then the series with index n have very
good convergence, but if these are imaginary then Mc-
Donald’s functions transform to Hankel’s functions and the
mentioned series become slowly convergent. Therefore we
separate the part of (A9) that has good convergence:
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2
-> X p—Ko(Pmbn)COS(qybn)

(A10)
n=1 Re(p,,)#0 T4
The residual part of Eq. (A9) (C;=C,+C3),
P
- > o Ko(pm|bn|)e_jq>'b”, (A11)

n#0 Re(p,,)=0 2

which has slow convergence, should be calculated with the
help of a special method. Note that there is only a finite
number of indices m such that Re(p,,)=0. This means that in
Eq. (A11) the summation over the index m includes only a
finite number of terms. For example, at the low frequency
limit, when the period a is large compared with the wave-
length in the host medium, the equation Re(p,,)=0 has only
one solution m=0 if g, <k.

We will calculate the sum of the series (A11) as the limit

with z tending to zero:
Goimy S L K (o) + e T

=0 n£0 Re(p,,)=0 2
(A12)

Introducing the auxiliary parameter z makes it possible to
complement the series (A12) by the zeroth terms and then to
use the Poisson summation formula over the index n [see Eq.
(A3) for the necessary Fourier transform]. The result is as
follows:

2 L k™
2 =lim E o 2 - (mn) _KO(Pm|Z|) .
z—0 Re(pm )=0 Zab n=—o0 kZ e
(A13)

The term K(p,,|z|) in Eq. (A13) plays the role of the zero
term, which is subtracted from the complete series (already
transformed using the Poisson summation formula) in order
to get the series (A12) without the zero term. This term con-
tains a singularity if z tends to zero. This singularity disap-
pears in Eq. (A13) during subtraction from the complete se-
ries which experiences the same singularity. In order to
cancel out these singularities analytically we apply the
method of the dominant series; namely, we split the series
from (A13) into dominant and correction parts:

+00 1 (mn) _p (mn) _
ol [e Jlelk ¢ mnm,]
E .7 (mn) T E . (mn)
n=—=° Jkg n#0 ]ki ) 2’7T|I’l|
e _ (m0)
e 2mlz|nlb j\z\k

+2b + .
z 2 Jkgmo)

The dominant series can be evaluated using the tabulated
formula (see [31], Appendix)
+00
2 e

n=1 N

—na

—In(1-¢79). (A14)

The whole singularity is included in the dominant series.
The correction series have no singularity when z tends to
zero. Using this fact the formula (A13) can be rewritten as
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2
4 1 1 b
G- 3 AL
2 Refr=o 2ab \ jk! CN a0 LK™ 2min]

b lim[log(1 — e727I?) + Ko(pm|z|)]) (A15)

T z—0

The logarithmic singularity occurring here is compensated
by that arising from the term with the McDonald function.
The small-argument expression for the McDonald function
reads

Ko(a) — = [y+In(a/2)],

where y=0.577 is Euler’s constant.
Thus, the value of the limit in Eq. (A15) is as follows:

blp,| 77)
lim[-|=-1{In +y+j- .

zﬂo[ ] ( 4 [ 2
The series in Eq. (A15) with index n e [—%, + %] except
n=0 have convergence 1/n% This convergence rate makes
calculations not rapid enough. The convergence can be ac-
celerated by extraction of the dominant series. In order to get

the convergence 1/n* it is enough to extract series of order
1/n? and 1/n°:

§ 1 b _§ 1L b gb
- Lk 2 | o jkim’") 2 e

(A16)

n=1 Z
b ]_ .
16713 24 167’
(A17)

where lm=2q5 - pi, and we have taken into account that

+00 +o0
1 1
—-=—, — =1.202.
n=1 1 2 6 Vgl I’l3

Collecting the terms corresponding to +n and —n together
in Eq. (15) we obtain

400
1 b 1 1 b
_ _ 1,1 b
EO {jki’"") 27|n| } n% Lk(vm’”) e wn]
1 b
- 2 |: k(m n s -

b’ +1202M
8mn’ T8

(A18)

The property ki’"’_")(qx,qy)=kim’")(qx,—qy) makes the
function

! 1 _ b/(2min))
e e = { @bl + 12+ P @mnie?)
b/(2min]) 1
’ \/(qyb/(an) — 12+ p2 /(4P n2/b?)

even with respect to the variable g,b/(27n). This means that,
being expanded into a Taylor series, it will contain only even
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power terms. Thus, the transformed series (A18) when ex-
panded as a series of order 1/n will contain only odd-power
terms. In Eq. (A18) we have already extracted the dominant
series of order 1/n°. So we conclude that the series (A18)
have convergence of order 1/ n°, which is better than was
estimated when we started to extract the dominant series in
Eq. (A17).

Collecting the parts of the term C, given by Egs. (A10),
(A15), (A16), and (A18) we obtain the final formula for C,
possessing convergence that is appropriate for rapid and ef-
fective numerical calculations:

+00

P
Cr=-2 2 ~“Ky(pbn)cos(q,bn)
n=1 Re(p,,)#0 T4

2 +o0
|l o1 (1 1 b
- 2 M et 2 et e
[/ki O = \jklm gl

Re(p,)=0 2ab ™™
1,0 Lb® ( blp,| ) b
- 1.202—+ —| 1 + +7—1.
871%3) 8\ am )T,
(A19)

3. Contribution of the line located at x axis

The term C; has the form of the series [5,53]

1 1 ik ;
> (_ + J_;’> ¢~i(Klamlqam) (A2

Cr=
P 2ma o \ml T m

These series have convergence that is not enough for ef-
fective direct numerical calculations. We will use the conver-
gence acceleration technique presented in [52] in order to
evaluate these series. The dominant series can be extracted in
the following way:

§< 1 +jka> ~Jsm
=t )€
R

(1 jka  jka jka+1 o
=25t - e’
o \m® m~ mm+1) m(m+1)(m+2)
2 —jsm E e—jsm
+ jk + ka+ 1 _—.
S (ka )mlm(m+1)(m+2)

(A21)

The first series in the right-hand side of Eq. (A21) (that
containing the expression in parentheses) can be simplified
to

(2jka +3)m +2
= m+ D(m+2)°

—jsm

These series have convergence 1/m* which is convenient for
rapid calculations. The other series in the right-hand side of
Eq. (A21) can be evaluated in the closed form using the
formula (A14):
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+° —jsm —jvm +° e—jsm
S = E

m=1 m(m+ 1) m=1

=—(1-¢")In(1 -

+o0 _ig +00 i
e -JSsh 1 [ e JSn

m 1m+1

m=

el +1,

oy mim+1)(m+2) 2 oy m(im+1)

_ § e—jsm :|
o (m+1)(m+2)
- %{(1 - In(1 — ™) +e/* - ﬂ

After these manipulations the formula (A21) transforms
as follows:

2 (2jka+3)m+2
dma’ | 2y mi(m+ 1)(m+2)

—jkam

cos(g,am)
— (jka+ D[ Inr* + 12 Int + 2/ cos(q,a)]
—2jka(t, Int+t_Int") + (7jka + 3)] , (A22)

where

tr=1-e¢dkada ;=1 _ pilk-g)a

=1- ei(k+qx)a’ t=1-elkada,

The expression (A22) looks more cumbersome as com-
pared to the initial formula (A20), but it is much more con-
venient for rapid calculations. The estimations show that in
order to get accuracy of 0.01% one needs to take more than
200 terms in expression (A20) and only ten terms in (A22).

4. Energy conservation

In this subsection we evaluate the imaginary part of C and
consider the problem of the energy balance in a 1D array
(chain) of dipoles, in a 2D array (grid), and in a 3D array
(lattice).

Let us return to formula (A20) and find the imaginary part
of the interaction constant of the dipole chain:

1 < sin kam cos kam
Im(C;) = —32 cos g.am 3 —ka 3 )
A" =1 m m
(A23)
To calculate these series we used the auxiliary formulas
* "2
cossm (m—s ?
> = ( ) -, (A24)
ol M 4 12
" sin sm —3ms'?+ 20’
3= . (A25)
m 12

These formulas can be easily obtained from the relation
(A14) rewritten for the case a=js,
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< eism i ) m=s'
> =—In(l-e”)==|In|2sin=| + ,
el M 2 2

(A26)

where s’ =27{s/(27)} and we use the notation {x} for the

fractional part of the variable x. To derive Egs. (A24) and

(A25) one should integrate Eq. (A26) over the parameter s.
Note that the real part of C; contains the series

0

CoS sm
and E 3 s
m

(A27)

+

2 S sm
2

m=1 M

m=1

which can be expressed in terms of second and third order
repeating integrals of the tangent function. These integrals
cannot be evaluated in elementary functions, but they are
suitable for numerical calculations. We prefer to use the ac-
celeration technique leading to the result (A22) for evalua-
tion of Cj, rather than using numerical integration. Some
other recommendations for calculation of the series (A27)
can be found in [31] together with their expansions into Tay-
lor series.

After substitution of Eqs. (A24) and (A25) into Eq. (A23)
and some algebra the following compact form for Im(Cs)
can be obtained:

B
Im(C3)=—+— > pa.

4 (A28)
7T a \k)((”’)\<k

It is easy to obtain the imaginary parts of C, and C,. The
imaginary part of formula (A19) reads

2 2
mC)= W -3 Z—'". (A29)
Im(k")=0 “4PH Km)<g 4
The imaginary part of formula (A5) reads
2
Im(C,) =- 2 T]:Emn) (A30)
Im(k"™)=0 abk,
Collecting together Egs. (A28)—(A30) we obtain that
k3
Im(C)=—. (A31)
6

This relation makes the dispersion equation (13) real valued
for the case of propagating modes.

Now, let us discuss the energy balance in the chain using
the result (A28). If the dipoles are arranged in a periodical
linear array x=am phased by a wave vector with x compo-
nent ¢, (as in [53]) then the structure radiates cylindrical
waves. The number of these waves depends on the relation
between the wavelength, chain period, and phase constant ¢,.
In the regime of the guided mode ¢, >k this number is zero
since |k)(€m)| >k for all m. Using the Sipe-Kranendonk condi-
tion (2) for the imaginary part of the polarizability’s inverse
value one can obtain a purely real valued dispersion equation
for the guided mode in the chain [5,53]:
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/J’()a_l(w) - CS(w’QX’a) =0.

However, the arrangement of the dipoles into an array
changes the radiation losses of the individual scatterers. The
effective polarizability of the scatterer in the linear array be-
comes as follows:

aj=(a = uy'Cy) 7"

The Sipe-Kranendonk condition in the general case of radi-
ated waves should be replaced by

2

Im()= X
|ki’")‘<k aplg

(A32)

The expression (A32) follows from the formulas (2) and
(A28). This relation expresses the balance between the radia-
tion losses of the individual scatterer of the chain and the
contribution of the chain unit cell into the radiated waves
(k) < k).

Now, consider a 2D grid of dipoles located at the nodes
with coordinates x=am and y=>bn and phased by real ¢, and
q,, respectively. The effective polarizability of a scatterer in
this planar grid is

= (a;' - py'C) =l - ug (G + G
(A33)

The formulas (A33) and (A29) allow us to formulate an
analog of the Sipe-Kranendonk condition for the planar grid:

E _Pi

—n (A34)
Im(kg"m))=0 Zab,uokg )

Im(agl) =

The terms —p>/(4am,) corresponding to the cylindrical
waves in Eq. (A32) are canceled out by the respective terms
from Eq. (A29) and replaced by the terms pZ/ (Zab,u,okim")).
The last ones correspond to the radiated plane waves [Flo-
quet harmonics with indices (m,n) produced by the grid].
The condition Im(kim"))=0 for the finite sum in Eq. (A34) is
the radiation condition for these Floquet harmonics. Formula
(A34) expresses the balance between the radiation losses of
the dipole and the contribution of the grid unit cell to the
radiation.

In the surface wave regime, when Im(kim”))aﬁo for all
m,n, using the Sipe-Kranendonk condition (2) one can ob-
tain a real valued dispersion equation for the surface wave
propagating along the grid:

MOa_l(w) - 62(w’Qx»qy’avb) = Ov
where

62(w’QxaQy’a’b) = CZ(w’qx’qy’avb) + C3(w’CIx’a)'

Finally, let us consider a 3D lattice with nodes x=am, y
=bn, and z=cl phased by real q,, q,, and g, respectively. The
effective polarizability of the scatterer in this lattice is
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ay=(a;'=C) ' =(a' = O)7". (A35)
From Egs. (A30), (A35), and (A34) we easily obtain
Im(e5") =0. (A36)

The terms pZ/ (2ab,u,0k§m")) in Eq. (A34) are canceled by the
respective terms of Eq. (A30). Physically, this means that
radiation losses of the scatterer in this lattice are zero. The
lattice does not radiate power because it fills the whole space

+00
1 (2jka+3)m+2
Cks 5 9b3 = 4
(k.g.,b,c) 47m3[ m§=:1m3(m+l)(m+2)

—2jka(t, nt*+t_Int") + (7jka + 3)]

., (mn)

400 e_]kz
+ 2

Mm=—00 p=—o 2]abk ) cos k(m")c —Cos g.¢

blpw| y} Lk
4n 1)

¢—cos g,

+1 2021mb3 + b {1
. — = —| In
8T

where we use the following notations (introduced above and
collected here):

2mm 2mn
k(m) =q.,+—, k(n =4yt K
a b
_—
Pm= \’,(k)((WI))Z_kZ’ lm=2q}2’_pi’

mn . / m n
K = = V™) + (K7 - 1.

t+ =1- e_j(k“'qx)a’ =1- e—j(k—qx)a’

ty=1—e/Waa ¢ = _pilk-ae,

The calculations using Eq. (A37) can be restricted to the
real part only, because its imaginary part is predefined by Eq.
(A31). The series in Eq. (A37) have excellent convergence
which ensures very rapid numerical calculations.

6. Low frequency limit case

It is useful to consider the low frequency limit (when &,
4. 4y, and g, are small as compared with 1/a, 1/b, and 1/c)
and show that the result for C transits to the known one for
this case. Following the definition (A20) for term C; we
conclude that

1.202
—2 5=

Tas oy m ma

C3=

The expression (A19) for C, reduces to
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and the radiation losses of the single scatterer are compen-
sated by the electromagnetic interaction in the lattice (as well
as in the waveguide regimes of the chain and of the grid).

5. Final formula

Collecting together the results (A5), (A19), and (A20) we
obtain the final expression for the dynamic interaction
constant:

ekam cos(g.am) — (jka + 1)[£2 In 1" + 7 In 1~ + 2/ cos(g,a)]

+00 2

P
> X TK(p,bn)cos(q,bn)
n=1 Re(p,,)#0 T4

pm 1 4 1 1 b lmb3
E » 2\ S (m0) + E ) + 7 N 3
Re(pm):() 2ab sz n=1 sz ’ jkz ’ mn 87T31’l

(A37)

)

Note that both C; and C, turn out to be independent of k and
q. The formula (A5) for C, splits into two terms: the first
one, which depends on k and q (where we have expanded
trigonometric functions into Taylor series), and some addi-
tional constant,

B

m=1 n=1

2 +
1 KP-q 4 D m
2" 2b 2mmcla _ 1
z m=1 €

Ci=——
! abckz—qi—qi—q

400 400

RS SDS

a” =1 n=1 e

m?/\(bmla)* + n*

2\ (bmla)>+n’clb _ 1 '

Finally, we get

1 K- q*
C=- 5 2 ., Lt Cs(a,b,c),

A38
abe I - ¢* y—d; (A38)

where C(a,b,c) is the static interaction constant (7), and
obtain the alternative representation for Cy(a,b,c)

m?/\(bmla)* + n*

40
1. 202 8
C, (a b, C) a3 |:m2=1 z ezw\f(bm/a)2+zlzc/b_ 1
400 400 2
mm
_E qumc/a +22m ( n>:|
m=1 n=1

(A39)

The static interaction constant expressed as (A39) is equiva-
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lent to (7). The expression (A39) can be obtained from Eq.
(7) by applying the Poisson summation formula over the
index n and then by direct summation over the index / (in the
same manner as was done above during evaluation of the
term C,). Both formulas (A39) and (7) are extremely effec-
tive for rapid numerical calculations due to excellent conver-
gence of the series. The difference between (7) and (A39) is
that (7) contains triple series in contrast to (A39) which com-

PHYSICAL REVIEW E 72, 026615 (2005)

prises only double ones. It is noteworthy that the conver-
gence of the series in (7) is higher than in (A39).

The formula (A38) when substituted into Eq. (13) reduces
the dispersion equation for an electromagnetic crystal to the
known dispersion equation of a continuous uniaxial magnetic
material (8) with magnetic permittivity of the form (6). This
fact is an important verification of the introduced dispersion
theory.
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